Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Biophys Chem ; 295: 106971, 2023 04.
Article in English | MEDLINE | ID: covidwho-2275211

ABSTRACT

Structures can now be predicted for any protein using programs like AlphaFold and Rosetta, which rely on a foundation of experimentally determined structures of architecturally diverse proteins. The accuracy of such artificial intelligence and machine learning (AI/ML) approaches benefits from the specification of restraints which assist in navigating the universe of folds to converge on models most representative of a given protein's physiological structure. This is especially pertinent for membrane proteins, with structures and functions that depend on their presence in lipid bilayers. Structures of proteins in their membrane environments could conceivably be predicted from AI/ML approaches with user-specificized parameters that describe each element of the architecture of a membrane protein accompanied by its lipid environment. We propose the Classification Of Membrane Proteins based On Structures Engaging Lipids (COMPOSEL), which builds on existing nomenclature types for monotopic, bitopic, polytopic and peripheral membrane proteins as well as lipids. Functional and regulatory elements are also defined in the scripts, as shown with membrane fusing synaptotagmins, multidomain PDZD8 and Protrudin proteins that recognize phosphoinositide (PI) lipids, the intrinsically disordered MARCKS protein, caveolins, the ß barrel assembly machine (BAM), an adhesion G-protein coupled receptor (aGPCR) and two lipid modifying enzymes - diacylglycerol kinase DGKε and fatty aldehyde dehydrogenase FALDH. This demonstrates how COMPOSEL communicates lipid interactivity as well as signaling mechanisms and binding of metabolites, drug molecules, polypeptides or nucleic acids to describe the operations of any protein. Moreover COMPOSEL can be scaled to express how genomes encode membrane structures and how our organs are infiltrated by pathogens such as SARS-CoV-2.


Subject(s)
COVID-19 , Membrane Proteins , Humans , Membrane Proteins/chemistry , Membrane Lipids , Artificial Intelligence , Models, Molecular , SARS-CoV-2/metabolism , Lipid Bilayers/chemistry , Adaptor Proteins, Signal Transducing/metabolism
2.
J Biochem ; 173(6): 447-457, 2023 May 29.
Article in English | MEDLINE | ID: covidwho-2235398

ABSTRACT

The interaction of the ß-coronavirus severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) nucleocapsid (N) protein with genomic RNA is initiated by specific RNA regions and subsequently induces the formation of a continuous polymer with characteristic structural units for viral formation. We hypothesized that oligomeric RNAs, whose sequences are absent in the 29.9-kb genome sequence of SARS-CoV-2, might affect RNA-N protein interactions. We identified two such hexameric RNAs, In-1 (CCGGCG) and G6 (GGGGGG), and investigated their effects on the small filamentous/droplet-like structures (< a few µm) of N protein-genomic RNA formed by liquid-liquid phase separation. The small N protein structures were sequence-specifically enhanced by In-1, whereas G6 caused them to coalesce into large droplets. Moreover, we found that a guanosine 12-mer (G12, GGGGGGGGGGGG) expelled preexisting genomic RNA from the small N protein structures. The presence of G12 with the genomic RNA suppressed the formation of the small N protein structures, and alternatively apparently altered phase separation to induce the formation of large droplets with unclear phase boundaries. We showed that the N-terminal RNA-binding domain is required for the stability of the small N protein structures. Our results suggest that G12 may be a strong inhibitor of the RNA-N protein interaction.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Nucleocapsid Proteins/chemistry , Nucleocapsid Proteins/genetics , Nucleocapsid Proteins/metabolism , RNA, Viral/genetics , RNA, Viral/chemistry , RNA, Viral/metabolism , Protein Binding
3.
PeerJ ; 10: e13136, 2022.
Article in English | MEDLINE | ID: covidwho-1753927

ABSTRACT

Open reading frame 8 (ORF8) shows one of the highest levels of variability among accessory proteins in Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the causative agent of Coronavirus Disease 2019 (COVID-19). It was previously reported that the ORF8 protein inhibits the presentation of viral antigens by the major histocompatibility complex class I (MHC-I), which interacts with host factors involved in pulmonary inflammation. The ORF8 protein assists SARS-CoV-2 in evading immunity and plays a role in SARS-CoV-2 replication. Among many contributing mutations, Q27STOP, a mutation in the ORF8 protein, defines the B.1.1.7 lineage of SARS-CoV-2, engendering the second wave of COVID-19. In the present study, 47 unique truncated ORF8 proteins (T-ORF8) with the Q27STOP mutations were identified among 49,055 available B.1.1.7 SARS-CoV-2 sequences. The results show that only one of the 47 T-ORF8 variants spread to over 57 geo-locations in North America, and other continents, which include Africa, Asia, Europe and South America. Based on various quantitative features, such as amino acid homology, polar/non-polar sequence homology, Shannon entropy conservation, and other physicochemical properties of all specific 47 T-ORF8 protein variants, nine possible T-ORF8 unique variants were defined. The question as to whether T-ORF8 variants function similarly to the wild type ORF8 is yet to be investigated. A positive response to the question could exacerbate future COVID-19 waves, necessitating severe containment measures.

4.
Cell Biochem Biophys ; 80(2): 277-293, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1705618

ABSTRACT

The 14-3-3 family proteins are vital scaffold proteins that ubiquitously expressed in various tissues. They interact with numerous protein targets and mediate many cellular signaling pathways. The 14-3-3 binding motifs are often embedded in intrinsically disordered regions which are closely associated with liquid-liquid phase separation (LLPS). In the past ten years, LLPS has been observed for a variety of proteins and biological processes, indicating that LLPS plays a fundamental role in the formation of membraneless organelles and cellular condensates. While extensive investigations have been performed on 14-3-3 proteins, its involvement in LLPS is overlooked. To date, 14-3-3 proteins have not been reported to undergo LLPS alone or regulate LLPS of their binding partners. To reveal the potential involvement of 14-3-3 proteins in LLPS, in this review, we summarized the LLPS propensity of 14-3-3 binding partners and found that about one half of them may undergo LLPS spontaneously. We further analyzed the phase separation behavior of representative 14-3-3 binders and discussed how 14-3-3 proteins may be involved. By modulating the conformation and valence of interactions and recruiting other molecules, we speculate that 14-3-3 proteins can efficiently regulate the functions of their targets in the context of LLPS. Considering the critical roles of 14-3-3 proteins, there is an urgent need for investigating the involvement of 14-3-3 proteins in the phase separation process of their targets and the underling mechanisms.


Subject(s)
Intrinsically Disordered Proteins , 14-3-3 Proteins , Intrinsically Disordered Proteins/chemistry
5.
J Biol Chem ; 298(3): 101677, 2022 03.
Article in English | MEDLINE | ID: covidwho-1665144

ABSTRACT

In response to the recent SARS-CoV-2 pandemic, a number of labs across the world have reallocated their time and resources to better our understanding of the virus. For some viruses, including SARS-CoV-2, viral proteins can undergo phase separation: a biophysical process often related to the partitioning of protein and RNA into membraneless organelles in vivo. In this review, we discuss emerging observations of phase separation by the SARS-CoV-2 nucleocapsid (N) protein-an essential viral protein required for viral replication-and the possible in vivo functions that have been proposed for N-protein phase separation, including viral replication, viral genomic RNA packaging, and modulation of host-cell response to infection. Additionally, since a relatively large number of studies examining SARS-CoV-2 N-protein phase separation have been published in a short span of time, we take advantage of this situation to compare results from similar experiments across studies. Our evaluation highlights potential strengths and pitfalls of drawing conclusions from a single set of experiments, as well as the value of publishing overlapping scientific observations performed simultaneously by multiple labs.


Subject(s)
COVID-19 , Nucleocapsid Proteins , SARS-CoV-2 , COVID-19/virology , Consensus , Humans , Nucleocapsid/genetics , Nucleocapsid/metabolism , Nucleocapsid Proteins/isolation & purification , Nucleocapsid Proteins/metabolism , RNA, Viral/metabolism , SARS-CoV-2/chemistry , SARS-CoV-2/metabolism , Viral Proteins/metabolism
6.
Front Mol Biosci ; 8: 653148, 2021.
Article in English | MEDLINE | ID: covidwho-1247882

ABSTRACT

The highly infectious disease COVID-19 caused by the Betacoronavirus SARS-CoV-2 poses a severe threat to humanity and demands the redirection of scientific efforts and criteria to organized research projects. The international COVID19-NMR consortium seeks to provide such new approaches by gathering scientific expertise worldwide. In particular, making available viral proteins and RNAs will pave the way to understanding the SARS-CoV-2 molecular components in detail. The research in COVID19-NMR and the resources provided through the consortium are fully disclosed to accelerate access and exploitation. NMR investigations of the viral molecular components are designated to provide the essential basis for further work, including macromolecular interaction studies and high-throughput drug screening. Here, we present the extensive catalog of a holistic SARS-CoV-2 protein preparation approach based on the consortium's collective efforts. We provide protocols for the large-scale production of more than 80% of all SARS-CoV-2 proteins or essential parts of them. Several of the proteins were produced in more than one laboratory, demonstrating the high interoperability between NMR groups worldwide. For the majority of proteins, we can produce isotope-labeled samples of HSQC-grade. Together with several NMR chemical shift assignments made publicly available on covid19-nmr.com, we here provide highly valuable resources for the production of SARS-CoV-2 proteins in isotope-labeled form.

7.
J Med Virol ; 93(5): 2790-2798, 2021 May.
Article in English | MEDLINE | ID: covidwho-1196503

ABSTRACT

Coronavirus disease-2019 (COVID-19), the ongoing pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a major threat to the entire human race. It is reported that SARS-CoV-2 seems to have relatively low pathogenicity and higher transmissibility than previously outbroke SARS-CoV. To explore the reason of the increased transmissibility of SARS-CoV-2 compared with SARS-CoV, we have performed a comparative analysis on the structural proteins (spike, envelope, membrane, and nucleoprotein) of two viruses. Our analysis revealed that extensive substitutions of hydrophobic to polar and charged amino acids in spike glycoproteins of SARS-CoV2 creates an intrinsically disordered region (IDR) at the beginning of membrane-fusion subunit and intrinsically disordered residues in fusion peptide. IDR provides a potential site for proteolysis by furin and enriched disordered residues facilitate prompt fusion of the SARS-CoV2 with host membrane by recruiting molecular recognition features. Here, we have hypothesized that mutation-driven accumulation of intrinsically disordered residues in spike glycoproteins play dual role in enhancing viral transmissibility than previous SARS-coronavirus. These analyses may help in epidemic surveillance and preventive measures against COVID-19.


Subject(s)
COVID-19/epidemiology , Disease Outbreaks , Membrane Fusion/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Amino Acid Sequence , COVID-19/transmission , COVID-19/virology , Humans , Mutation , Protein Subunits , Severe acute respiratory syndrome-related coronavirus/genetics , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Viral Structural Proteins/chemistry , Viral Structural Proteins/genetics , Viral Structural Proteins/metabolism , Virus Internalization
8.
Comput Struct Biotechnol J ; 18: 1884-1890, 2020.
Article in English | MEDLINE | ID: covidwho-652297

ABSTRACT

The nucleocapsid (N) protein is conserved in all four genera of the coronaviruses, namely alpha, beta, gamma, and delta, and is essential for genome functionality. Bioinformatic analysis of coronaviral N sequences revealed two intrinsically disordered regions (IDRs) at the center of the polypeptide. While both IDR structures were found in alpha, beta, and gamma-coronaviruses, the second IDR was absent in deltacoronaviruses. Two novel coronaviruses, currently placed in the Gammacoronavirus genus, appeared intermediate in this regard, as the second IDR structure could be barely discerned with a low probability of disorder. Interestingly, these two are the only coronaviruses thus far isolated from marine mammals, namely beluga whale and bottlenose dolphin, two highly related species; the N proteins of the viruses were also virtually identical, differing by a single amino acid. These two unique viruses remain phylogenetic oddities, since gammacoronaviruses are generally avian (bird) in nature. Lastly, both IDRs, regardless of the coronavirus genus in which they occurred, were rich in Ser and Arg, in agreement with their disordered structure. It is postulated that the central IDRs make cardinal contributions in the multitasking role of the nucleocapsid protein, likely requiring structural plasticity, perhaps also impinging on coronavirus host tropism and cross-species transmission.

SELECTION OF CITATIONS
SEARCH DETAIL